Close

Tháng Bảy 10, 2019

TCVN 9733:2013 – Phần 5

Phụ lục F

(quy định)

Tiêu chí cho việc thiết kế đường ống

F.1 Bơm trục ngang

F.1.1 Hình dạng đường ống được chấp nhận không được gây ra sự lệch quá mức giữa bơm và bộ dẫn động. Hình dạng ống mà tạo ra tải trọng vòi phun của bộ phận nằm trong phạm vi được quy định trong Bảng 5 giới hạn biến dạng thân đến một nửa tiêu chí thiết kế của nhà cung cấp bơm (xem 6.3.3) và đảm bảo sự xê dịch trục bơm nhỏ hơn 250 mm (0,010 in).

F.1.2 Hình dạng đường ống tạo ra tải trọng ngoài phạm vi quy định trong Bảng 5 cũng có thể chấp nhận được không cần phải hỏi ý kiến nhà cung cấp bơm nếu điều kiện quy định từ F.1.2 a) đến F.1.2 c) như dưới đây được thỏa mãn. Việc thỏa mãn các điều kiện này đảm bảo rằng bất kỳ sự biến dạng thân bơm nào nằm trong tiêu chí thiết kế của nhà cung cấp (xem 6.3.3) và đảm bảo rằng sự xê dịch trục bơm nhỏ hơn 380 mm (0,015 in).

a) Lực và mô men mỗi bộ phận tác động lên mỗi bích vòi phun của bơm phải không được vượt quá phạm vi quy định trong Bảng 5 (T4) bởi một hệ số nhiều hơn 2.

b) Hợp lực được áp dụng (FRSA), FRDA) và mô men tổng hợp được áp dụng (MRSA), MRDA) tác động lên mỗi bích vòi phun của bơm phải thỏa mãn công thức tương tác thích hợp như được đưa ra trong công thức (F.1) và (F.2):

[FRSA/(1,5 · FRST4)] + [MRSA/(1,5 · MRST4)] <2                               (F.1)

[FRDA/(1,5 · FRDT4)] + [MRDA/(1,5 · MRDT4)] <2                              (F.2)

c) Lực và mô men mỗi bộ phận được áp dụng tác động lên mỗi bích vòi phun của bơm phải được tịnh tiến đến giữa bơm. Đại lượng của hợp lực áp dụng, FRCA, mô men tổng hợp, MRCA, và mô men áp dụng phải được giới hạn bởi công thức (F.3) đến (F.5). (Quy ước dấu được cho trong Hình 21 đến Hình 25 và quy tắc bàn tay phải nên được sử dụng trong việc đánh giá các công thức này).

FRCA < 1,5 (FRST4 + FRDT4)                                                           (F.3)

|MYCA| < 2,0 (MYST4 + MYDT4)                                                       (F.4)

MRCA < 1,5 (MRST4 + MRDT4)                                                        (F.5)

trong đó:

FRCA = [(FXCA)2 + (FYCA)2 + (FZCA)2]0,5

trong đó:

FXCA = FXSA + FXDA

FYCA = FYSA + FYDA

FZCA = FZSA + FZDA

MRCA = [(MXCA)2 + (MYCA)2 + (MZCA)2]0,5

trong đó

MXCA = MXSA + MXDA – [(FYSA)(zS) + (FYDA)(zD) – (FZSA)(yS) – (FZDA)(yD)]/1000

MYCA = MYSA + MYDA + [(FXSA)(zS) + (FXDA)(zD) – (FZSA)(xS) – (FZDA)(xD)]/1000

MZCA = MZSA + MZDA – [(FXSA)(yS) + (FXDA)(yD) – (FYSA)(xS) – (FYDA)(xD)]/1000

Theo đơn vị USC, hằng số 1 000 phải được biến đổi thành 12. Hằng số này là hệ số chuyển đổi để thay đổi từ milimét sang mét hoặc inch sang ft.

F.1.3 Hình dạng đường ống tạo ra tải trọng lớn hơn tải trọng cho phép trong F.1.2 phải được thỏa thuận bởi cả khách hàng và nhà cung cấp.

CHÚ THÍCH: Để định lượng sự biến dạng cơ khí thực tế (tại điều kiện môi trường xung quanh) phải tiến hành kiểm tra sự căn chỉnh đường ống được yêu cầu trong API RP 686, Chương 6. API686 chỉ cho phép độ biến dạng rất nhỏ do sử dụng giá trị từ phụ lục này.

F.2 Bơm đứng dọc trục

Bơm đứng dọc trục (OH3 và OH6) mà chỉ được đỡ nhờ đường ống đã được lắp có thể liên quan đến tải trọng bộ phận đường ống mà lớn hơn gấp đôi giá trị được đưa trong Bảng 5 nếu các tải trọng này không gây ra một ứng suất chính lớn hơn 41 N/mm2 (5 950 psi) ở bất kỳ vòi phun nào. Để tính toán, tính chất đoạn vòi phun của bơm phải dựa vào quy trình 40 ống mà kích cỡ danh nghĩa của nó bằng với kích cỡ của vòi phun thích hợp. Các công thức (F.6), (F.7) và (F.8) có thể được sử dụng để định lượng ứng suất chính, ứng suất dọc và ứng suất cắt tương ứng trong vòi phun.

Đối với đơn vị SI, áp dụng công thức (F.6) đến (F.8):

Đối với đơn vị USC, áp dụng công thức (F.9) đến (F.11)

Trong đó:

 ứng suất chính, tính bằng megapascal (pao lực trên mỗi inch vuông);

 ứng suất dọc, tính bằng megapascal (pao lực trên mỗi inch vuông);

 ứng suất cắt, tính bằng megapascal (pao lực trên mỗi inch vuông);

FX lực trên trục X;

FY lực trên trục Y;

FZ lực trên trục Z;

MX mô men trên trục X;

MY mô men trên trục Y;

MZ mô men dụng trên trục Z;

Di, Do đường kính trong và ngoài của vòi phun, tính bằng milimet (inch).

FX, FY, MX, MY, và MZ là các tải trọng tác động lên vòi hút hoặc vòi xả; như vậy chỉ số dưới dòng SA và DA được lược bỏ để đơn giản hóa công thức. Tín hiệu FY là dương nếu tải trọng đặt vòi phun chịu lực căng; là âm nếu tải trọng đặt vòi phun chịu nén. Có thể tham khảo ở Hình 21 và tải trọng tác dụng lên vòi phun để xác định xem vòi phun chịu căng hay chịu nén. Giá trị tuyệt đối MY phải được dùng trong công thức (F.8) và (F.11).

F.3 Thuật ngữ

Các định nghĩa dưới đây áp dụng cho các vấn đề mẫu thử trong F.4.

C Tâm của bơm. Đối với bơm loại OH2, BB2, và BB5 có hai giá đỡ, tâm được xác định nhờ chỗ giao nhau của đường trục bơm và mặt thẳng đứng đi qua tâm của hai giá đỡ (xem Hình 24 và Hình 25). Đối với bơm loại BB1, BB3 và BB5 có bốn giá đỡ, tâm được xác định nhờ điểm giao nhau của trục đường trục bơm và mặt thẳng đứng đi qua giữa đường giữa bốn giá đỡ (xem Hình 23);

D Vòi xả;

Di Đường kính trong của quy trình ống 40 mà kích cỡ danh nghĩa của ống bằng với kích cỡ vòi bơm theo yêu cầu, tính bằng milimét (inch);

Do Đường kính ngoài của quy trình ống 40 mà kích cỡ danh nghĩa của ống bằng với kích cỡ vòi bơm theo yêu cầu, tính bằng milimét (inch);

F Lực, tính bằng Newton (pao lực);

FR Hợp lực; FRSA và FRDA được tính bằng căn bậc hai của tổng phương pháp lấy bình phương sử dụng lực bộ phận được áp dụng tác động lên bích vòi phun; FRST4 và FRDT4 được trích từ Bảng 5, sử dụng kích cỡ vòi phun thích hợp;

M Mô men, tính bằng Newton mét (ft-pao lực);

MR Mô men tổng hợp; MRSA và MRDA được tính bằng căn bậc hai của phương pháp lấy bình phương sử dụng mô men bộ phận được áp dụng tác động lên bích vòi phun; MRST4 và MRDT4 được trích từ Bảng 5 sử dụng kích cỡ vòi phun thích hợp;

 ứng suất chính, được tính bằng megapascal (pao lực trên inch vuông);

 ứng suất dọc, được tính bằng Newton trên milimét vuông (pao trên inch vuông);

 ứng suất cắt, được tính bằng Newton trên milimét vuông (pao trên inch vuông);

S Vòi hút;

x, y,z Tọa độ định vị các bích vòi phun với tâm của bơm, tính bằng milimét (inch);

X, Y, Z Chiều tải trọng (xem Hình 21 đến Hình 25);

Chỉ số dưới dòng A là tải trọng được áp dụng;

Chỉ số dưới dòng T4 là tải trọng được trích từ Bảng 5.

F.4 Vấn đề mẫu thử

F.4.1 Ví dụ 1A Đơn vị SI

F.4.1.1 Vấn đề

Đối với bơm chất lỏng hút có đầu công xôn (OH2), kích cỡ vòi phun và tọa độ định vị được cho trong Bảng F.1. Tải trọng vòi phun được áp dụng như được cho trong Bảng F.2. Vấn đề là xác định xem điều kiện quy định ở F.1.2a), F.1.2b) và F.1.2c) có thỏa mãn hay không.

F.4.1.2 Giải pháp

F.4.1.2.1 Việc kiểm tra điều kiện F.1.2a) được tiến hành như sau:

Đối với vòi hút mặt đầu DN 250:

|FXSA/FXST4| = |+12900/6670| = 1,93 < 2,00

|FYSA/FYST4| = |0/5340| = 0 < 2,00

|FZSA/FZST4| = |-8 852/4450| = 1,99 < 2,00

|MXSA/MXST4| = |-1 356/5020| = 0,27 < 2,00

|MYSA/MYST4| = |-5 017/2440| = 2,06 > 2,00

|MZSA/MZST4| = |-7 458/3800| = 1,96 < 2,00

Vì MYSA vượt quá giá trị quy định trong Bảng 5 (đơn vị SI) bởi nhiều hơn hệ số 2 nên không thỏa mãn. Giả sử MYST có thể giảm xuống -4 879. Khi đó,

|MYSA/MYST4| = |-4 879/2440| = 1,999 < 2,00

Đối với vòi xả trên cùng DN 200:

|FXDA/FXDT4| = |+7117/3 780| = 1,88 < 2,00

|FYDA/FYDT4| = |-445/3110| = 0,14 < 2,00

|FZDA/FZDT4| = |+8 674/4890| = 1,77 < 2,00

|MXDA/MXDT4| = |+678/3530| = 0,19 < 2,00

|MYDA/MYDT4| = |-3 390/1760| = 1,93 < 2,00

|MZDA/MZDT4| = |-4 882/2 580| = 1,89 < 2,00

Miễn là MYSA có thể giảm xuống -4 879, tải trọng đường ống tác động lên mỗi vòi thỏa mãn được điều kiện quy định trong F.1.2 a).

Bảng F.1 – Kích cỡ vòi phun và tọa độ định vị cho Ví dụ 1A

Vòi Kích cỡ x y z
  DN mm mm mm
Hút 250 +267 0 0
Xả 200 0 -311 +381

Bảng F.2 – Tải trọng vòi áp dụng cho Ví dụ 1A

Lực Giá trị N Mô men Giá trị N•m
Hút
FXSA +12 900 MXSA -1 356
FYSA 0 MYSA -5 017a
FZSA -8 852 MZSA -7 458
Xả
MXDA +7 117 MXDA +678
MYDA -445 MYDA -3 390
MZDA +8 674 MZDA -4 882
a Xem F.4.1.2.1.

F.4.1.2.2 Việc kiểm tra điều kiện F.1.2b) được tiến hành như sau:

Đối với vòi hút, FRSA và MRSA được xác định bằng căn bậc hai của tổng phương pháp lấy bình phương:

Liên quan đến công thức (F.1):

FRSA / (1,5 · FRST4) + MRSA/(1,5 · MRST4) ≤ 2

15645/(1,5 · 9630) + 9015/(1,5 · 6750) ≤ 2

                                                      1,96 < 2

Đối với vòi xả, FRDA và MRDA được xác định bằng phương pháp tương tự được sử dụng để tìm ra FRSA và MRSA:

Liên quan đến công thức (F.2):

FRDA/ (1,5 · FRDT4) + MRDA/(1,5 · MRDT4) ≤ 2

11229/(1,5 · 6920) + 5982/(1,5 · 4 710) ≤ 2

                                                       1,93 < 2

Tải trọng tác động lên mỗi vòi phun thỏa mãn công thức tương tác thích hợp, do vậy điều kiện xác định trong F.1.2 b) phải được thỏa mãn.

F.4.1.2.3 Việc kiểm tra điều kiện F.1.2c) được tiến hành như sau:

Để kiểm tra điều kiện này, lực và mô men bộ phận được tịnh tiến và phân giải đến tâm của bơm. FRCA được xác định như sau [xem F.1.2c)]:

Liên quan đến công thức (F.3):

FRCA < 1,5 · (FRST4 + FRDT4)

20023 < 1,5 · (9 630 + 6920)

20023 < 24 825

MYCA được xác định như sau [xem F.1,2c)]:

= (-4879) + (-3390) + [(+12 900)(0,00)+…

…+(+7117)(+381) – (-8852)(+267) -(+8674)(0,00)]/1000

= -3194

Liên quan đến công thức (F.4):

|MYCAl < 2,0(MYST4 + MYDT4)

|-3 194| < 2,0(2 440 + 1 760)

3 194 < 8 400

MRCA được xác định như sau [xem F.1.2c)]:

MYCA = -3 194 (xem tính toán ở phần trước)

MZCA = (-7458) +(-4882) -[(+12 900)(0,00) +(+7117)(-311) -(0)(+267) -(-445)(0,00)]/1000

= -10 127

MRCA = [(-3 206)2 + (-3194)2 + (-10 127)2]0,5

= 11 092

Liên quan đến công thức (F.5):

MRCA < 1,5 · (MRST4 + MRDT4)

11092 < 1,5 · (6 750 + 4710)

11092 < 17 190

Như vậy, tất cả các yêu cầu của F.1.2 c) đã được thỏa mãn.

F.4.2 Ví dụ 2A – Đơn vị SI

F.4.2.1 Vấn đề

Đối với bơm trục thẳng đứng DN 80. DN 100. 178 mm (OH3 hoặc OH6), tải trọng vòi được đề xuất áp dụng như được cho trong Bảng F.3. Bằng cách kiểm tra, FZSA, MZSA, và MXDA lớn hơn hai lần giá trị được cho trong Bảng 5 (đơn vị SI). Như đã nêu ở F.2, tải trọng bộ phận này chấp nhận được miễn là ứng suất chính được tính nhỏ hơn 41 MPa. Vấn đề là xác định ứng suất chính cho vòi hút và vòi xả.

Bảng F.3 – Tải trọng vòi được đề xuất ứng dụng cho Ví dụ 2A

Lực Giá trịN Mô men ValueNm
FXSAFYSA

FZSA

–2 224-5 338

+1 334

Hút DN 100MXSAMYSA

MZSA

-+136-2 034

+1 356

FXDAFYDA

FZDA

-+1 334-2 224

+445

Xả DN 80MXDAMYDA

MZDA

-+2 712+271

+136

F.4.2.2 Giải pháp

F.4.2.2.1 Tính toán vòi hút như sau:

Với ống quy trình 40 có kích cỡ danh nghĩa DN 100, Do = 114 mm và Di = 102 mm. Do vậy,

D2o – D2i = (114)2 – (102)2 = 2 592

D4o – D4i = (114)4 – (102)4 = 6,065 . 107

Công thức (F.7) được sử dụng để xác định ứng suất dọc cho vòi hút, .

Tải trọng FYSA tác động lên vòi hút theo chiều âm Y và tạo ra ứng suất nén; do vậy, ký hiệu âm trên FYSA được dùng.

Công thức (F.8) được dùng để xác định ứng suất cắt cho vòi hút,

Ứng suất chính cho vòi hút,  được tính khi sử dụng công thức (F.6):

Như vậy, tải trọng vòi hút thỏa mãn.

F.4.2.2.2 Tính toán vòi xả như sau:

Với ống quy trình 40 có kích cỡ danh nghĩa 80 mm, Do = 89 mm và Di = 78 mm. Do vậy,

Công thức (F.7) được dùng để xác định ứng suất dọc cho vòi xả, .

Tải trọng FYDA tác động lên vòi xả là chiều âm Y và tạo ra ứng suất kéo; do vậy, ký hiệu dương trên FYDA được sử dụng.

Công thức (F.8) được dùng để xác định ứng suất cắt cho vòi xả, .

Ứng suất chính cho vòi xả,  được tính khi sử dụng công thức (F.6):

= (+ 97,33/2) + [(+97,33)2/4 + (+5,75)2)]0,5

= +97,67 > 41

Như vậy, tải trọng vòi xả quá lớn. Bằng việc kiểm tra, nếu MXDA giảm 50 % xuống 1 356 N•m ứng suất chính sẽ vượt quá 41 Mpa. Do đó, giá trị lớn nhất cho MXDA gấp hai lần MXDT4, hoặc 1 900 N•m

F.4.3 Ví dụ 1B – Đơn vị USC

F.4.3.1 Vấn đề

Đối với bơm hút có đầu công xôn (OH2), kích cỡ vòi phun và tọa độ định vị được cho trong Bảng F.4. Tải trọng vòi phun được áp dụng như được cho trong Bảng F.5. Vấn đề là xác định xem điều kiện quy định trong F.1.2 a), F.1.2 b) và F.1.2 c) có thỏa mãn hay không.

Bảng F.4 – Kích cỡ vòi phun và tọa độ định vị cho Ví dụ 1B

Kích thước tính bằng inch

Vòi Kích cỡ x y z
Hút 10 +10,50 0 0
Xả 8 0 -12,25 +15

Bảng F.5Tải trọng vòi phun áp dụng cho Ví dụ 1B

Lực Giá trị lbf Mô men Giá trị ftlbf
Hút
FXSA +2 900 MXSA -1 000
FYSA 0 MYSA -3 700a
FZSA MZSA
Xả
FXDA +1 600 MXDA +500
FYDA -100 MYDA -2 500
FZDA MZDA
a Xem F.4.1.2.1.

F.4.3.2.1 Giải pháp

F.4.3.2.1 Việc kiểm tra điều kiện F.1.2 a) được tiến hành như sau:

Đối với vòi hút mặt đầu 10 in:

Vì MYSA vượt quá giá trị quy định trong Bảng 5 (đơn vị USC) bởi lớn hơn hệ số 2 nên không thỏa mãn. Giả sử MYSA có thể giảm xuống -3 599. Khi đó,

|MYSA/MYST4| =|-3 599/1800| = 1,999 < 2,00

Đối với vòi xả trên cùng 8 in:

Miễn là MYSA có thể giảm xuống -3 599, tải trọng đường ống tác động lên mỗi vòi thỏa mãn được điều kiện quy định trong F.1.2a).

F.4.3.2.2 Việc kiểm tra điều kiện F.1.2 b) được tiến hành như sau:

Đối với vòi hút, FRSA và MRSA được xác định dùng căn bậc hai của tổng phương pháp lấy bình phương:

Liên quan đến công thức (F.1):

1,95 < 2

Đối với vòi xả, FRDA và MRDA được xác định bằng phương pháp tương tự được sử dụng để tìm FRSA và MRSA:

Liên quan đến công thức (F.2):

1,92 < 2

Tải trọng tác động lên mỗi vòi phun thỏa mãn công thức tương tác thích hợp, do vậy điều kiện xác định trong F.1.2 b) được thỏa mãn.

F.4.3.2.3 Kiểm tra điều kiện F.1.2 c) được tiến hành như sau:

Để kiểm tra điều kiện này, lực và mô men bộ phận được tịnh tiến và phân giải đến tâm bơm. FRCA được xác định như sau [xem F.1.2 c)]:

Liên quan đến công thức (F.3):

4 501 < 1,5 · (2 200 + 1560)

4 501 < 5640

MYCA được xác định như sau [xem F.1.2 c)]:

= (-3599) + (-2500)+[(+2900)(0,00)+(+1600)(+15)-(-1990)(+10,5)-(+1950)(0,00)]/12

= – 2 358

Liên quan đến công thức (F.4):

|MYCA| < 2,0 |(MYST4 + MYDT4)

|-2 358| < 2,0 |(1800 + 1300)

2 358 < 6200

MRCA được xác định như sau [xem F.1.2c)):

MXCA=(-1 000) +(+500) -[(0)(0,00) +(-100)(+15,00)-(-1 990)(0,00)-(+1 950)(-12,25)]/12

= -2 366

MYCA = -2 358 (xem tính toán ở phần trước)

MZCA = (-5 500) +(-3 600) -[(+2 900)(0,00)+(+1 600)(-12,25) -(0)(+10,50) -(-100)(0,00)]/12

= -7 467

MRCA = [(-2 366)2 + (-2358)2 + (-7 467)2]0,5 = 8180

Liên quan đến công thức (F.5):

MRCA < 1,5 · (MRST4 + MRDT4)

8 180 < 1,5 · (5 000 + 3500)

8 180 < 12750

Như vậy, tất cả các yêu cầu của F.1.2 c) đã được thỏa mãn.

F.4.4 Ví dụ 2B – Đơn vị USC

F.4.4.1 Vấn đề

Đối với bơm trục thẳng đứng NPS3. NPS4. 7 (OH3 hoặc OH6), tải trọng vòi được đề xuất áp dụng như được cho trong Bảng F.6. Bằng cách kiểm tra, FZSA, MZSA, và MXDA lớn hơn hai lần giá trị được cho trong Bảng 5 (đơn vị USC). Như đã nêu ở F.2, tải trọng bộ phận này chấp nhận được miễn là ứng suất chính được tính nhỏ hơn 41 Mpa. Vấn đề là xác định ứng suất chính cho vòi hút và vòi xả.

Bảng F.6 – Tải trọng vòi được đề xuất ứng dụng cho Ví dụ 2B

Lực Giá trị lbf Mô men Giá trịftlbf
-FXSAFYSA

FZSA

–500-1 200 Hút NPS 4MXSAMYSA

MZSA

-+100-1 500
-FXDAFYDA

FZDA

-+300-500 Xả NPS 3MXDAMYDA

MZDA

-+2000+200

F.4.4.2 Giải pháp

F.4.4.2.1. Tính toán vòi hút như sau:

Với ống quy trình 40 có kích cỡ danh nghĩa 4 in, Do = 4,500 in và Di = 4,026 in. Do vậy,

Công thức (F.10) được sử dụng để xác định ứng suất dọc cho vòi hút, .

Tải trọng FYSA tác động lên vòi hút theo chiều âm Y và tạo ra ứng suất nén; do vậy, ký hiệu âm trên FYSA được dùng.

= [1,27 . (-1 200)/4,04] + [122 . 4,500 .1 500] /147,34

= 3 367

Công thức (F.11) được dùng để xác định ứng suất cắt cho vòi hút, .

= (1,27. 583/4,04) + [61 . 4,500 (|-1500|) /147,34]

= 2 978

Ứng suất chính cho vòi hút,  được tính khi sử dụng công thức (F.9):

= (+3 367/2) + [(+3 367)2/4 + (+2 978)2]0,5

= +5 105 < 5 950

Như vậy, tải trọng vòi hút thỏa mãn.

F.4.4.2.2 Tính toán vòi xả như sau:

Với ống quy trình 40 có kích cỡ danh nghĩa 3 in, Do = 3,500 và Di =3,068. Do vậy,

Công thức (F.10) được dùng để xác định ứng suất dọc cho vòi xả,

Tải trọng FYDA tác động lên vòi xả là chiều âm Y và tạo ra ứng suất kéo; do vậy, ký hiệu dương trên FYDA được sử dụng.

= [1,27(+500)/2,84] + [122(3,5)(2 002)]/61,47

= 14 131

Công thức (F.11) được dùng để xác định ứng suất cắt cho vòi xả,

= [1,27. 316/2,84] + [61. 3,500 . (|+200|)/61,47]

= 836

Ứng suất chính cho vòi xả,  được tính khi sử dụng công thức (F.9):

= (+14 131/2) + [(+14 131)2/4 + (+836)2]0,5

= +14 181 > 5950

Như vậy, tải trọng vòi xả quá lớn. Bằng việc kiểm tra, nếu MXDA giảm 50 % xuống 1 000 ft.lbf, ứng suất chính phải vượt quá 5 950 psi. Do đó, giá trị lớn nhất cho MXDA gấp hai lần MXDT4, hoặc 1 400ft.lbf.

Phụ lục G

(tham khảo)

Hướng dẫn lựa chọn loại vật liệu

Bảng G.1 sử dụng để hướng dẫn chung cho các nhà máy thi công tại chỗ và các công tác chuyển giao, bốc dỡ hàng. Không nên sử dụng bảng này nếu không am hiểu tình hình chung của các công việc liên quan.

Bảng G.1 – Hướng dẫn lựa chọn loại vật liệu

Công việc Nhiệt độ Dải áp suất Loại vật liệu Ghi chú khi tham khảo
°C (oF)
Nước sạch, nước ngưng, nước tháp làm mát <100 <212 Tất cả I-1 or I-2
Nước sôi và nước công nghiệp <12012 đến 175>175 <250250 đến 350>350 Tất cảTất cảTất cả I-1 or I-2S-5S-6,C-6 aaa
Nước cấp cho lò hơiTách trụcVỏ đôi (thùng) >95>95 >200 Tất cảTất cả C-6S-6
Bơm tuần hoàn của lò hơi >95 >200 Tất cả C-6
Nước thoát, nước trống ngưng hồi lưu, rút nước, và chứa hydrocacbon của các loại nước này, bao gồm các dòng chảy ngược <175>175 <350>350 Tất cảTất cả S-3hoặcS-6C-6 b-
Propan, butan, dầu khí hóa lỏng, amoniac, etylen, các công việc yêu cầu nhiệt độ thấp (nhiệt độ kim loại nhỏ nhất) 230>-46>-73

>-100

>-196

<450>-50>-100

>-150

>-320

Tất cảTất cảTất cả

Tất cả

Tất cả

S-1S-1(LCB)S-1(LC2)

S-1(LC3)

A-7hoặcA-8

-hh

h,i

h,i

Dầu diezen; xăng, dầu mỏ, dầu hỏa, dầu khí, điện, dầu bôi trơn loại nặng và trung bình, dầu nhiên liệu, chất bã, dầu thô, atphan, đáy thô tổng hợp <230230đến370>370 <450450 đến700>700 Tất cảTất cảTất cả S-1S-6C-6 -b,cb
Hyđrocacbon không bị ăn mòn, ví dụ như chất xúc tác, xăng đồng phân hóa, dầu khử lưu 230đến 370 450 đến700 Tất cả S-4 c
Xylen, hydrocacbon không màu (CH3C6H5), aceton, benzen, fufuran, MEK, cumene <230 <450 Tất cả S-1
Natri cacbonat <175 <350 Tất cả I-1
Kiềm (natrihydroxit), nồng độ < 20% <100>100 <212>212 Tất cảTất cả S-1- de
Nước chua <95 <200 Tất cả f
Nước chứa lưu huỳnh <260 <470 Tất cả D-1
Nước lò, nước vỉa và nước biển Tất cả Tất cả Tất cả D-1hoặc D-2 f
Lưu huỳnh (dạng lỏng) Tất cả Tất cả Tất cả S-1
Bùn FCC <370 <700 Tất cả C-6
Cacbonat kali <175 <350 Tất cả C-6
<370 <700 Tất cả A-8
Các dung dịch gốc MEA, DEA và TEA <120 <250 Tất cả S-1
Các dung dịch sạch DEA, TEA <120 <250 Tất cả S-1hoặc S-8 <i.g
Dung dịch sạch MEA (chỉ có CO2) 80 đến 150 175 đến 300 Tất cả S-9 d
Dung dịch sạch MEA (CO2 và H2S) 80 đến 150 175 đến 300 Tất cả S-8 d,g
Các dung dịch đậm đặc MEA-, DEA-, TEA <80 175 Tất cả S-1hoặc S-8 d
Nồng độ axit sunfuric > 85 % <38 <100 Tất cả S-1 b
85 % đến mức < 1 % <230 <450 Tất cả A-8 b
Nồng độ axit hydroflouric > 96 % <38 <100 Tất cả S-9 b
Vật liệu để chế tạo các bộ phận bơm được cho trong Phụ lục H.Phải có các đề xuất vật liệu cụ thể đối với các công việc không được xác định rõ ràng nêu trong bảng này.Nếu vỏ gang (6.12.1.6) được đề xuất cho công việc liên quan đến hóa chất thì chỉ sử dụng tại các vị trí không nguy hiểm. Vỏ thép cũng có thể được sử dụng cho các bơm đang sử dụng nằm gần nhà máy thi công hoặc bất kỳ địa điểm nào mà hơi nước đế thoát ra từ bộ phận hư hỏng có thể gây nguy hiểm cho các bơm sốc thủy lực, ví dụ như công việc chất hàng.
a) Hàm lượng ô xy và chất đệm của nước có thể được xem xét trong khi lựa chọn vật liệu.b) Độ ăn mòn của nước thoát, hyđrocacbon trên 230 °C (450 °F), axit và cặn axit có thể thay đổi lớn. Do vậy, nên có các đề xuất vật liệu sử dụng trong mỗi trường hợp. Loại vật liệu chỉ ra trên đây đáp ứng phần nhiều các các yêu cầu này, tuy nhiên vẫn phải được xác định lại. Các vật liệu S-8 cũng được xem xét khi nhiệt độ vận hành dưới 95 °C (200 °F).c) Nếu tính ăn mòn của sản phẩm thấp, các vật liệu loại S-4 có thể được sử dụng đối với các công việc ở 231 °C đến 370 °C (451 °F đến 700 °F). Nên có các đề xuất vật liệu cụ thể đối với mỗi trường hợp.

d) Tất cả các mối hàn phải là loại ứng suất thấp.

e) Nên sử dụng vật liệu hợp kim UNS N 08007 hoặc Ni-Cu cho bơm.

f) Đối với nước lò, nước vỉa và nước biển, khách hàng và nhà cung cấp nên thỏa thuận về loại vật liệu xây dựng phù hợp nhất với mục đích sử dụng.

g) Nhà cung cấp phải xem xét tác động của độ giãn nở vật liệu khác nhau giữa vỏ và rô to và khẳng định sự phù hợp nếu nhiệt độ vận hành vượt quá 95 °C (200 °F).

h) Các vật liệu được lựa chọn đối với công việc cần nhiệt độ thấp phải đáp ứng các yêu cầu trong 6.12.1.6 và 6.12.4. Các cấp hợp kim đúc LCB, LC2 và LC3 được nêu ra chỉ để tham khảo. Các cấp LCB, LC2 và LC3 tham khảo ISO 4911. Các cấp C23-45BL, C43E2AL và C43L tương đương với ASTM A352/A352M, các cấp LCB, LC2 và LC3. Sử dụng các vật liệu tương đương cho hợp kim rèn.

i) Các hợp kim vật liệu căn cứ vào nhôm, đồng, đồng nhôm và niken có thể được xem xét nhiệt độ thấp ở mức -196 °C (-320 °F).

 

Phụ lục H

(quy định)

Các vật liệu và đặc tính kỹ thuật của vật liệu cho bộ phận bơm

Bảng H.1 liệt kê các loại vật liệu để khách hàng lựa chọn (xem 6.12.1.2).

Các Bảng H.2, Bảng H.3 và Bảng H.4 có thể được sử dụng để hướng dẫn các đặc tính vật liệu. Nếu các bảng này được sử dụng, không nên cho rằng các đặc tính kỹ thuật của vật liệu này được chấp nhận mà không xem xét đến các phạm vi sử dụng các vật liệu đó. Bảng H.2 liệt kê các vật liệu theo tiêu chuẩn tương ứng có thể xem xét để chấp nhận. Các vật liệu này cho thấy nguồn gốc, loại và cấp độ. Điều kiện yêu cầu hoặc độ cứng (tại điểm phù hợp) không được quy định. Các vật liệu này có thể thay đổi lẫn nhau khi sử dụng.

Bảng H.1 – Các vật liệu cho bộ phận mòn phi kim loại

Vật liệu Giới hạn nhiệt độ°C (°F) Độ chênh áp giới hạn trên bộ phận ăn mòn tuyến tính đo được ở 25 mm (1,0 in)kPa (bar; psi) ng dụng
Nhỏ nhất Lớn nhất
Polyete hoặc xeton (PEEK)Sợi các bon ngắt quãng -30 (-20) 135 (275) 2 000 (20; 300) Các bộ phận tĩnh
Polyete hoặc xeton (PEEK)Cuộn dây sợi các bon liên tục -30 (-20) 230 (450) 3 500 (35; 500), hoặc14 000 (140; 2 000) nếu được hỗ trợ phù hợp Các bộ phận tĩnh hoặc quay
Nhựa phức hợp gia cố PFA/CF20 % tỷ lệ khối lượngSợi các bon định hướng X-Y ngẫu nhiên -46 (-50) 230 (450) 2 000 (20; 300) Các bộ phận tĩnh
Than chì graphit các bonTẩm nhựaTẩm babit

Tẩm niken

Tẩm đồng

-50 (-55)-100 (-150)

-195 (-320)

-100 (-450)

285 (550)150 (300)

400 (750)

2 000 (20; 300)2 750 (27,5; 400)

2500 (35; 500)

Các bộ phận tĩnh
Các vật liệu cho bộ phận ăn mòn phi kim loại, đã chứng minh sự tương thích với chất lỏng công tác có thể được đề xuất trong giới hạn ứng dụng. Xem 6.6.4 c).Các vật liệu này có thể được lựa chọn khi các bộ phận mòn phù hợp với bộ phận hợp kim được lựa chọn như thép Cr độ cứng 12 % hoặc thép không gỉ austenic bề mặt cứng. Các vật liệu này có thể sử dụng trên các giới hạn này nếu chứng minh được các ứng dụng và khách hàng chấp thuận.

Bng H.2 – Các vật liệu của đường ống

Bộ phận Chất lỏng
Chất lỏng công tác phụ trợ Hơi nước Nước làm mát
Phân loại Áp suất kếkPa (bar; psi) Kích cỡ tiêu chuẩn
Phân loại vật liệu I-1 và I-2 Tất cả vật liệu có thể hàn được < 500 (5; 75) > 500 (5; 75) Tiêu chuẩn< DN 25
(1 NPS)
Tùy chọn 1 DN 40 (1 1/2 NPS)
Đường ống Không có mối nốia Không có mối nốia Không có mối nốia Không có mối nốia Thép các bon (mạ kẽm theo tiêu chuẩn ISO 10684 hoặc ASTM A153/ A153M)
Đường ốngb Thép không gỉ (Loại không có mối nối 316) Thép không gỉ (Loại không có mối nối 316) Thép không gỉ (Loại không có mối nối 316) Thép không gỉ (Loại không có mối nối 316) Thép không gỉ (Loại không có mối nối 316)
Tất cả các van Loại 800 Loại 800 Loại 800 Loại 800 Loại 200 đồng Loại 200 đồng
Van cầu và van cổng Nắp đậy và miếng đệm chốt bu lông Nắp đậy và miếng đệm chốt bu lông Nắp đậy và miếng đệm chốt bu lông Nắp đậy và miếng đệm chốt bu lông
Khâu nối ống và kết hợp Loại cưỡng bức 3000 Loại cưỡng bức 3000 Loại cưỡng bức 3000 Loại cưỡng bức 3000 Gang dẻo (mạ kẽm (mạ kẽm theo tiêu chuẩn ISO 10684 hoặc ASTM A153/ A153M) Gang dẻo (mạ kẽm (mạ kẽm theo tiêu chuẩn ISO 10684 hoặc ASTM A153/ A153M)
Các phụ tùng ống Tiêu chuẩn của nhà sản xuất Tiêu chuẩn của nhà sản xuất Tiêu chuẩn của nhà sản xuất Tiêu chuẩn của nhà sản xuất Tiêu chuẩn của nhà sản xuất
Khớp ống chế tạo sẵn ≤ DN 25 (1 NPS) Nối bằng ren Hàn lồng vào nhau Nối bằng ren Hàn lồng vào nhau Nối bằng ren
Khớp ống chế tạo sẵn ≥ DN 40 (1 1/2 NPS) Khách hàng nêu cụ thể
Miếng đệm Cuộn dây xoắn ốc bằng thép không gỉ Austenic Cuộn dây xoắn ốc bằng thép không gỉ Austenit
Bu lông vít bích 4140 Hợp kim 4140 Hợp kim
a Quy trình 80 phải được sử dụng cho các kích cỡ của đường ống từ DN 15 đến DN 40 (NPS 1/2 đến NPS 1 1/2); Quy trình 80 phải được sử dụng cho (2 NPS) và lớn hơn.b Các kích cỡ của đường ống có thể chấp nhận được (theo ISO 4200) như sau:Đường kính 12.7 mm · 1,66 mm tường (1/2 in đường kính · 0,065 tường);

Đường kính 19 mm · 2,6 mm tường (3/4 in đường kính · 0,095 tường);

Đường kính 25 mm · 2,9 mm tường (1 in đường kính · 0,109 tường).

 

Phụ lục I

(quy định)

Phân tích bên

I.1 Phân tích bên

I.1.1 Yêu cầu chung

Nếu yêu cầu phân tích bên (xem 9.2.4.1), phương pháp và đánh giá kết quả phải được quy định trong I.1.2 đến I.1.5. Bảng I.1 minh họa quy trình phân tích. Phương pháp và đánh giá kết quả phải đặc biệt với động cơ xử lý chất lỏng trục nằm ngang.

Bảng I.1 – Sơ đồ lô gíc phân tích bên của rô to

Bước Nếu…. Thì…
1 Bơm và các điều kiện vận hành giống hoặc tương tự với bơm hiện có cùng với báo cáo vận hành đã được chứng minh Không cần phân tích
2 Rô to là loại cứng (6.9.1.2) Không cần phân tích
3 1 và 2 đều không đúng Phải tiến hành phân tích

I.1.2 Các tần số riêng

Báo cáo phải trình bày các nội dung sau:

a) Các tần số uốn “khô” riêng của lần thứ nhất, thứ hai và thứ ba của rô to (xem Bảng 6.9.1.2).

CHÚ THÍCH 1: Các tần số uốn “khô” riêng là các điểm tham khảo hữu ích khi phân tích trình tự các tần số riêng tắt dần.

CHÚ THÍCH 2: Thực hành thiết kế thông thường nhằm khảo sát các mẫu công xôn, khớp nối, vành chặn và chỉnh đặt tần số uốn riêng ban đầu tại phạm vi riêng biệt ít nhất 20 % tần số kích thích cao nhất (dựa trên tốc độ liên tục lớn nhất) trước khi tiến hành phân tích bên của rô to.

b) Tất cả các tần số riêng tắt dần trong dải tần số từ 0 (zero) đến gấp 2,2 lần tốc độ liên tục lớn nhất, phải được tính trong dải tốc độ từ 25 % đến 125 % định mức, phải tính đến điều kiện sau đây:

1) Độ cứng và độ tắt dần theo khe hở vận hành bên trong như sau tại nhiệt độ mong muốn:

Độ hở với nước;

Độ hở với chất lỏng được bơm;

2 (hai lần) độ hở với chất lỏng được bơm;

2) Độ cứng và độ tắt dần tại cụm làm kín trục (nếu là loại đường ríc rắc)

3) Độ cứng và độ tắt dần trong các ổ trục đối với khe hở và nhiệt độ dầu trung bình. Tác động lên độ cứng và độ tắt dần của ổ trục trong bơm thông thường rất nhỏ khi so sánh với khe hở vận hành bên trong; Do vậy, khá hiệu quả khi phân tích các ổ trục tại khe hở và nhiệt độ dầu trung bình.

4) Khối lượng và độ cứng của kết cấu đỡ ổ trục;

5) Tiêu chí ống lót nửa khớp nối của bơm và miếng đệm nửa khớp nối.

CHÚ THÍCH: Mặc dù tần số riêng tắt dần theo trình tự cao hơn có thể gần cánh bánh công tác, không có kinh nghiệm về động cơ xử lý chất lỏng đối với các sự cố động lực học rô to xấp xỉ như vậy. Điều này là do trình tự các hình mẫu phức tạp, năng lượng kích thích khá thấp và hệ số tắt dần tại tần số cao hơn liên quan.

c) Các giá trị hoặc cơ sở các hệ số độ tắt dần và độ cứng được sử dụng để tính toán.

I.1.3 Phạm vi tách biệt và độ tắt dần

Đối với độ lõm mới và độ lõm mới 2, hệ số tắt dần ngược với phạm vi tách biệt giữa bất kỳ tần số uốn riêng nào và đồng thời đường vận hành liên tục phải trong phạm vi “có thể chấp nhận” vùng được cho trong Hình I.1. Nếu không thỏa mãn điều kiện này, phản ứng độ tắt dần không cân bằng phải được xác định (xem I.1.4)

CHÚ THÍCH: Trong các động cơ xử lý chất lỏng, đánh giá các đặc tính động lực học ban đầu của rô to căn cứ vào độ tắt dần ngược với phạm vi tách biệt chứ không phải hệ số khuếch đại ngược với phạm vi tách biệt. Hai hệ số chiếu cơ sở ban đầu. Đầu tiên, tần số riêng của rô to tăng với tốc độ quay, dẫn đến chênh áp qua khoảng hở bên trong và dẫn đến tăng tốc độ quay. Trên biểu đồ Campbell (Hình I.2), điều này có nghĩa là tách biệt gần hơn giữa tốc độ vận hành và các tần số riêng giữa tốc độ vận hành và tốc độ tới hạn. Vì hệ số khuếch đại tại tách biệt khép kín là không liên quan đến kích động đồng thời (mất cân bằng) của rô to, và điều đó tăng lên chỉ khi tính toán xấp xỉ căn cứ vào độ tắt dần. Thứ hai, độ tắt dần cho phép đặc tính kỹ thuật ở giá trị nhỏ nhất của tần số riêng theo tỷ lệ tốc độ vận hành từ 0,8 đến 0,4, do vậy đảm bảo rằng rô to phải không bị rung đồng thời.

Lượng giảm lôgarit, , liên quan đến hệ số giảm tắt dần, theo công thức (I.1):

d = (2p. )/(1 -. 2)0,5

Lên đến 0,4, mối quan hệ xấp xỉ được cho trong công thức (1.2) giữa d và hệ số khuếch đại, Fa

= d/2p

= 1/(2 x Fa)

Trong các động cơ xử lý chất lỏng, các điều kiện tắt dần tới hạn tương đương với:

≥ 0,15

≥ 0,95

Fa ≤ 3.33

CHÚ THÍCH 1: Các giá trị đưa ra cho các điều kiện tắt dần tới hạn trong các động cơ xử lý chất lỏng khác với các điều kiện trong các tiêu chuẩn API đối với các động cơ xử lý khí và hơi. Độ chênh lệch phản ánh thực tế vận hành tốt với các động cơ xử lý chất lỏng được thiết kế sử dụng các giá trị trong phụ lục này.

CHÚ THÍCH 2: Độ tắt dần của · ≥ 0,08 qua phạm vi từ fniIfrun 0,8 đến 0,4 được hỗ trợ bởi thiết kế và kinh nghiệm vận hành của các động cơ xử lý chất lỏng, cho thấy thiết kế đáp ứng yêu cầu này và không đồng thời rung rô to.

I.1.4 Phân tích phản ứng mất cân bằng tắt dần

Nếu hệ số tắt dần trái ngược với phạm vi tách biệt đối với một chế độ hoặc các chế độ không được chấp nhận theo tiêu chí trong Hình I.1. Phản ứng tắt dần của rô to để mất cân bằng phải được xác định cho các chế độ theo các cơ sở sau:

a) chất lỏng được bơm;

b) (các) điều kiện khe hở, mới hoặc 2. Mới, gây ra độ tắt dần ngược với phạm vi tách biệt không hợp lý;

c) tổng độ mắt cân bằng của bốn lần (4) giá trị cho phép (xem Bảng 9.2.4.2.1) lấy chung ở một hoặc nhiều điểm để kích động các chế độ được khảo sát.

Chỉ khảo sát một chế độ mỗi lần vận hành máy tính.

I.1.5 Độ dịch chuyển cho phép

Độ dịch chuyển từ đỉnh này đến đỉnh khác của rô to bị mất cân bằng tại các điểm của độ dịch chuyển lớn nhất phải không vượt quá 35 % khe hở vận hành hướng tâm tại điểm đó.

CHÚ THÍCH: Trong bơm ly tâm, phản ứng tắt dần điển hình để mất cân bằng không thể hiện đỉnh dịch chuyển ở độ lớn đủ để đánh giá hệ số khuếch đại. Trong vòng giới hạn này, việc đánh giá phản ứng tắt dần để mất cân bằng bị giới hạn trong việc so sánh độ dịch chuyển rô to theo khe hở vận hành hướng tâm sẵn có.

51

CHÚ DẪN

X Tỷ số tần suất, fni/frun ..

Y Hệ số tắt dần

1 Vùng chấp nhận được

2 Vùng không chấp nhận được

Hình I.1 – Tỷ số tần suất ngược hệ số tắt dần

52

CHÚ DẪN

X Tốc độ bơm, tính bằng vòng trên phútY Tần số, fn1 Phạm vi tách biệt nhỏ nhất, fn lần 1

2 Phạm vi tách biệt nhỏ nhất, fn lần 2

3 Tốc độ tới hạn

4 Uốn cong lần hai

5 Uốn cong lần đầu

6 Khe hở ổ trục mới7 2.Khe hở8 Khe hở ổ trục mới

9 2.Khe hở

10 Đường vận hành

a Nhỏ nhất

b Lớn nhất

Hình I.2 – Sơ đồ Campbell điển hình

I.2 Kiểm tra xác nhận tại xưởng đặc tính động lực học của rô to

I.2.1 Nếu được quy định, đặc tính động lực học của rô to phải được kiểm tra xác nhận trong quá trình thử nghiệm tại xưởng. Phản ứng đối với sự mất cân bằng thực tế của rô to phải là cơ sở để xác nhận tính phù hợp trong phân tích bên tắt dần. Phản ứng này được đo trong quá trình bằng vận hành tốc độ thay đổi từ tốc độ định mức xuống đến 75 % tốc độ tới hạn đầu tiên hoặc bằng trong quá trình di chuyển xuống dốc. Nếu phản ứng đối với sự mất cân bằng tắt dần không được xác định trong phân tích rô to ban đầu (xem I.1.4) thì phản ứng này phải được xác định đối với bơm có các khoảng hở mới xử lý nước trước khi tiến hành thử nghiệm tại xưởng. Việc thử nghiệm mất không cân bằng này phải được tiếp tục thực hiện có hướng ở các pha có tính mất cân bằng dư tại các vị trí do nhà sản xuất xác định (thường là tại các khớp nối và/hoặc vành chặn).

CHÚ THÍCH: Mục tiêu chính của công tác kiểm tra xác nhận tại xưởng bằng phản ứng đối với sự mất cân bằng là để xác định tính hiện hữu của tốc độ tới hạn (độ rung lớn nhất) trong khoảng dung sai của giá trị đã tính toán, hoặc nếu qua phân tích chỉ ra tốc độ tới hạn tắt dần lớn, độ rung lớn nhất trong khoảng dung sai giá trị đã tính toán. Việc kiểm tra xác nhận tại xưởng bằng phương pháp này chỉ khả thi đối với bơm có các ống lót cổ trục và được trang bị đầu dò độ gần ở mỗi ổ trục.

I.2.2 Độ lớn và vị trí của các lần thử nghiệm tính mất cân bằng phải được xác định từ khi chế tạo độ nhạy mất cân bằng của rô to. Việc chế tạo này phải được thực hiện khi quỹ đạo rung tại mỗi ổ trục, được lọc sang tốc độ rô to (1) trong suốt hai lần vận hành thử nghiệm sau:

a) cùng với rô to có sẵn;

b) cùng với khối lượng mất cân bằng thử nghiệm cộng với 90° khi di chuyển lớn nhất trong khi vận hành a).

Độ lớn thử nghiệm tính mất cân bằng phải là sự di chuyển trục lớn nhất đã tính toán gây ra bởi tính mất cân bằng tổng hợp (thử nghiệm mất cân bằng dư) là 150 % tới 200 % mức di chuyển cho phép từ Bảng 8 hoặc Bảng 9 tại đầu dò ổ trục nhưng không được vượt quá 8 lần mức mất cân bằng rô to cho phép lớn nhất.

I.2.3 Trong quá trình thử nghiệm, sự dịch chuyển rung và góc pha tương ứng, lọc tốc độ rô to (1·) phải được đo và ghi lại.

I.2.4 Đặc tính của rô to phải được xem xét là đạt nếu đáp ứng các yêu cầu sau:

a) tốc độ tới hạn quan sát (độ rung tối đa và độ lệch pha tương ứng) trong khoảng ± 10 % (các) giá trị đã tính toán;

b) biên độ rung đã đo được trong khoảng 35 % các giá trị tính toán.

Tốc độ tới hạn tắt dần lớn không được quan sát thì việc có phản ứng của rô to trong vùng có tốc độ tới hạn tắt dần cao đã tính toán được kiểm tra xác nhận bằng phân tích.

I.2.5 Nếu không đáp ứng được tiêu chí cho trong I.2.4, thì hệ số độ cứng hoặc hệ số tắt dần hoặc cả hai hệ số trên được sử dụng trong tính toán tần suất riêng phải được điều chỉnh để tương thích giữa kết quả đo và kết quả tính toán. Hệ số của một loại yếu tố, khe hở hình khuyên có LID< 0,15, khe hở hình khuyên có LID> 0,15, sự tương tác bánh công tác và các ổ đỡ phải được điều chỉnh về cùng một hệ số hiệu chỉnh giống nhau. Khi đã có sự tương thích thì các hệ số hiệu chỉnh giống nhau phải được sử dụng để tính toán tần suất riêng của rô to và làm giảm chất lỏng được bơm, và các phạm vi tách của rô to ngược so với hệ số tắt dần được kiểm tra lại để được chấp nhận.

Trong số các hệ số được sử dụng để phân tích bên của rô to, thì các hệ số làm suy giảm khe hở hình khuyên có độ không chắc chắn nhất, do đó thường được điều chỉnh đầu tiên. Hệ số độ cứng của khe hở hình khuyên điển hình luôn có mức không chắc chắn thấp, do đó phải được điều chỉnh chỉ khi dựa trên dữ liệu hỗ trợ. Việc chỉnh sửa hệ số ổ trục yêu cầu phải tiến hành một cách cụ thể bởi các giá trị điển hình dựa trên dữ liệu thực tế đáng tin cậy.

I.2.6 Các phương pháp thay thế để kiểm tra xác nhận đặc tính động lực học của rô to, ví dụ, kích thích biến tần bằng bơm tại tốc độ vận hành để xác định được tần suất riêng của rô to. Việc sử dụng phương pháp thay thế và làm rõ các kết quả phải được sự chấp thuận của khách hàng và nhà sản xuất.

I.3 Lập tài liệu

Báo cáo phân tích bên phải bao gồm các thông tin sau:

a) các kết quả đánh giá ban đầu (xem 9.2.4.1.1);

b) dữ liệu rô to gốc sử dụng để phân tích, có thể là loại gốc;

c) sơ đồ Campbell (xem Hình I.2);

d) biểu đồ tỷ số tắt dần ngược với phạm vi tách biệt;

e) hình mẫu ở các tốc độ tới hạn mà tại đó phản ứng tắt dần làm mất cân bằng được xác định (xem Hình I.1.4);

f) biểu đồ tiệm cận từ việc kiểm tra xác nhận tại xưởng bằng mất cân bằng (xem I.2.3);

g) tổng kết các hiệu chỉnh phân tích để đạt thống nhất với kiểm tra xác nhận tại xưởng (xem 2.5);

Các mục e) đến g) phải thực hiện chỉ khi yêu cầu lập tài liệu phân tích hoặc khách hàng quy định.

Xem lại: TCVN 9733:2013 – Phần 4

Xem tiếp: TCVN 9733:2013 – Phần 6

Tin tức ngành Related
Mở Chat
1
Close chat
Xin chào! Cảm ơn bạn đã ghé thăm website. Hãy nhấn nút Bắt đầu để được trò chuyện với nhân viên hỗ trợ.

Bắt đầu

error: Content is protected !!
Click để liên hệ